Refine Your Search

Topic

Author

Search Results

Technical Paper

Reliability-Oriented Distributed Test Strategy for FOTA/SOTA Enabled Edge Device

2021-09-22
2021-26-0476
In order to enhance customer experience [5] and to reduce time to market, the manufacturers are constantly in need of being able to update software/firmware of the Electronic Control units (ECU) when the vehicle is in field operations. The updates could be a bug fix or a new feature release. Until the recent years, the updation of software/firmware used to be done using a physical hardwired connection to the Vehicle in a workshop. However, with the element of connectivity being added to the vehicle, the updation of software can be done remotely and wirelessly over the air using a feature called Flash over the air (FOTA) [2] and Software over the air (SOTA) [2]. In order to safeguard the telematics [3] ECU from tampering or hacking, the manufacturers are doing away with the ports on the underlying hardware through which manual flashing used to be done. This means that, the only option available to flash or update the ECU is using FOTA/SOTA.
Research Report

Unsettled Topics Concerning Airport Cybersecurity Standards and Regulation

2021-09-13
EPR2021020
Their associated information technology and cyber physical systems—along with an exponentially resultant number of interconnections—present a massive cybersecurity challenge. Unlike the physical security challenge, which was treated in earnest throughout the last decades, cyber-attacks on airports keep coming, but most airport lack essential means to confront such cyber-attacks. ...These missing means are not technical tools, but rather holistic regulatory directives, technical and process standards, guides, and best practices for airports cybersecurity—even airport cybersecurity concepts and basic definitions are missing in certain cases. Unsettled Topics Concerning Airport Cybersecurity Standards and Regulation offers a deeper analysis of these issues and their causes, focusing on the unique characteristics of airports in general, specific cybersecurity challenges, missing definitions, and conceptual infrastructure for the standardization and regulation of airports cybersecurity. ...Unsettled Topics Concerning Airport Cybersecurity Standards and Regulation offers a deeper analysis of these issues and their causes, focusing on the unique characteristics of airports in general, specific cybersecurity challenges, missing definitions, and conceptual infrastructure for the standardization and regulation of airports cybersecurity.
Journal Article

Real-Time Network Defense of SAE J1939 Address Claim Attacks

2021-08-30
Abstract Heavy vehicles are essential for the modern economy, delivering critical food, supplies, and freight throughout the world. Connected heavy vehicles are also driven by embedded computers that utilize internal communication using common standards. However, some implementations of the standards leave an opening for a malicious actor to abuse the system. One such abuse case is a cyber-attack known as the “Address Claim Attack.” Proposed in 2018, this attack uses a single network message to disable all communication to and from a target electronic control unit, which may have a detrimental effect on operating the vehicle. This article demonstrates the viability of the attack and then describes the implementation of a solution to prevent this attack in real time without requiring any intervention from the manufacturer of the target devices. The defense technique uses a bit-banged Controller Area Network (CAN) filter to detect the attack.
Standard

CAN FD Data Link Layer

2021-07-16
HISTORICAL
J1939-22_202107
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Technical Paper

A Controller Area Network Bus Identity Authentication Method Based on Hash Algorithm

2021-07-14
2021-01-5077
With the development of vehicle intelligence and the Internet of Vehicles, how to protect the safety of the vehicle network system has become a focus issue that needs to be solved urgently. The Controller Area Network (CAN) bus is currently a very widely used vehicle-mounted bus, and its security largely determines the degree of vehicle-mounted information security. The CAN bus lacks adequate protection mechanisms and is vulnerable to external attacks such as replay attacks, modifying attacks, and so on. On the basis of the existing work, this paper proposes an authentication method that combines Hash-based Message Authentication Code (HMAC)-SHA256 and Tiny Encryption Algorithm (TEA) algorithms. This method is based on dynamic identity authentication in challenge/response made and combined with the characteristics of the CAN bus itself as it achieves the identity authentication between the gateway and multiple electronic control units (ECUs).
Journal Article

Towards a Blockchain Framework for Autonomous Vehicle System Integrity

2021-05-05
Ensuring cybersecurity in an ECU network is challenging as there is no centralized authority in the vehicle to provide security as a service. ...While progress has been made to address cybersecurity vulnerabilities, many of these approaches have focused on enterprise, software-centric systems and require more computational resources than typically available for onboard vehicular devices.
Journal Article

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in current automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, countermeasures and evaluation methods.
Standard

CAN FD Data Link Layer

2021-03-22
HISTORICAL
J1939-22_202103
The flexible data rate capability in CAN (commonly called CAN FD) is implemented as a transport layer in order to allow for functional safety, cybersecurity, extended transport capability, and backward compatibility with SAE J1939DA.
Magazine

Autonomous Vehicle Engineering: March 2021

2021-03-04
Editorial SPAC attack The Navigator Mapping the way to safe and natural automated driving Motorcycles Enter the ADAS Age The latest models from BMW, Ducati and KTM feature Bosch's new ACC setup, but further advancements will require navigating critical rider-control strategies. On the Way to SVA Aptiv says its Smart Vehicle Architecture central controller is the key to simpler, more compact and higher-performance ADAS and AV systems. New Insistence for Driver Assistance Panelists at SAE International's 2021 Government/Industry Meeting say assisted-driving technology is worthwhile - but effective driver monitoring is crucial. Flash! Lidar's Next Generation Arrives Technology solutions from new players and alliances are poised to drive down cost. Horiba MIRA's Vision for World-Class AV Testing A new autonomous vehicle development center called Assured CAV boasts a lengthy list of assets and capabilities.
Journal Article

Simple Cryptographic Key Management Scheme of the Electronic Control Unit in the Lifecycle of a Vehicle

2020-12-31
Abstract Connecting vehicles to various network services increases the risk of in-vehicle cyberattacks. For automotive industries, the supply chain for assembling a vehicle consists of many different organizations such as component suppliers, system suppliers, and car manufacturers (CMs). Moreover, once a vehicle has shipped from the factory of the CM, resellers, dealers, and owners of the vehicle may add and replace the optional authorized and third-party equipment. Such equipment may have serious security vulnerabilities that may be targeted by a malicious attacker. The key management system of a vehicle must be applicable to all use cases. We propose a novel key management system adaptable to the electronic control unit (ECU) lifecycle of a vehicle. The scope of our system is not only the vehicle product line but also the third-party vendors of automotive accessories and vehicle maintenance facilities, including resellers, dealers, and vehicle users.
Magazine

Automotive Engineering: November/December 2020

2020-11-26
Volkswagen reveals its 'people's' EV VW's ID.4 leads the 2021 stampede to electrification for the mass market. Answering the fuel-cell compressor question The optimum compressor device for a fuel cell depends on vehicle application - and a lot more. An Eaton expert explains. Tire pressure's impact on EV driving range A new study shows that tighter control of tire-pressure loss can lead to marked improvement in electric-vehicle efficiency. Editorial Warm socks for the EV options list Supplier Eye For suppliers, a new drumbeat New SAE wireless charging standard is EV game-changer Tula DMD aims for more-efficient e-machines Multiphysics helps transform modeling, simulation Is the camshaft being timed out? New Magna seat puts connectivity in the second row BMW reveals its first "M" performance-badged two-wheeler Volkswagen readies new-generation Golf R Q&A Discussing safety tech, standards and industry trends with Hyundai North America's Brian Latouf
Journal Article

Assuring Vehicle Update Integrity Using Asymmetric Public Key Infrastructure (PKI) and Public Key Cryptography (PKC)

2020-08-24
Abstract Over the past forty years, the Electronic Control Unit (ECU) technology has grown in both sophistication and volume in the automotive sector, and modern vehicles may comprise hundreds of ECUs. ECUs typically communicate via a bus-based network architecture to collectively support a broad range of safety-critical capabilities, such as obstacle avoidance, lane management, and adaptive cruise control. However, this technology evolution has also brought about risks: if ECU firmware is compromised, then vehicle safety may be compromised. Recent experiments and demonstrations have shown that ECU firmware is not only poorly protected but also that compromised firmware may pose safety risks to occupants and bystanders.
Journal Article

Securing the On-Board Diagnostics Port (OBD-II) in Vehicles

2020-08-18
Abstract Modern vehicles integrate Internet of Things (IoT) components to bring value-added services to both drivers and passengers. These components communicate with the external world through different types of interfaces including the on-board diagnostics (OBD-II) port, a mandatory interface in all vehicles in the United States and Europe. While this transformation has driven significant advancements in efficiency and safety, it has also opened a door to a wide variety of cyberattacks, as the architectures of vehicles were never designed with external connectivity in mind, and accordingly, security has never been pivotal in the design. As standardized, the OBD-II port allows not only direct access to the internal network of the vehicle but also installing software on the Electronic Control Units (ECUs).
Journal Article

Secure Boot Revisited: Challenges for Secure Implementations in the Automotive Domain

2020-08-13
Abstract Secure boot, although known for more than 20 years, frequent attacks from hackers that show numerous ways to bypass the security mechanism, including electronic control units (ECUs) of the automotive industry. This paper investigates the major causes of security weaknesses of secure boot implementations. Based on penetration test experiences, we start from an attacker’s perspective to identify and outline common implementation weaknesses. Then, from a Tier-One perspective, we analyze challenges in the research and development process of ECUs between original equipment manufacturers (OEMs) and suppliers that amplify the probability of such weakness. The paper provides recommendations to increase the understanding of implementing secure boot securely on both sides and derives a set of reference requirements as a starting point for secure boot ECU requirements.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Book

Supply Chain Vulnerabilities Impacting Commercial Aviation

2019-09-04
Written by Kirsten Koepsel, a lawyer and engineer whose work has focused on aviation cybersecurity, Supply Chain Vulnerabilities Impacting Commercial Aviation addresses the big question facing aircraft manufacturers today: keep the work in house or outsource it? ...Supply Chain Vulnerabilities Impacting Commercial Aviation discusses the differences in requirements depending on the buyer of the aircraft (governmental or not), ranging from delivery delays to risks linked to cybersecurity and the Internet of Things (IoT), including possible problems with faulty sensors and counterfeit parts.
Standard

E/E Data Link Security

2019-07-12
CURRENT
J2186_201907
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Journal Article

Accelerated Secure Boot for Real-Time Embedded Safety Systems

2019-07-08
Abstract Secure boot is a fundamental security primitive for establishing trust in computer systems. For real-time safety applications, the time taken to perform the boot measurement conflicts with the need for near instant availability. To speed up the boot measurement while establishing an acceptable degree of trust, we propose a dual-phase secure boot algorithm that balances the strong requirement for data tamper detection with the strong requirement for real-time availability. A probabilistic boot measurement is executed in the first phase to allow the system to be quickly booted. This is followed by a full boot measurement to verify the first-phase results and generate the new sampled space for the next boot cycle. The dual-phase approach allows the system to be operational within a fraction of the time needed for a full boot measurement while producing a high detection probability of data tampering.
X